77 research outputs found

    Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer

    Get PDF
    Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer

    Molecular Design, Functional Characterization and Structural Basis of a Protein Inhibitor Against the HIV-1 Pathogenicity Factor Nef

    Get PDF
    Increased spread of HIV-1 and rapid emergence of drug resistance warrants development of novel antiviral strategies. Nef, a critical viral pathogenicity factor that interacts with host cell factors but lacks enzymatic activity, is not targeted by current antiviral measures. Here we inhibit Nef function by simultaneously blocking several highly conserved protein interaction surfaces. This strategy, referred to as “wrapping Nef”, is based on structure-function analyses that led to the identification of four target sites: (i) SH3 domain interaction, (ii) interference with protein transport processes, (iii) CD4 binding and (iv) targeting to lipid membranes. Screening combinations of Nef-interacting domains, we developed a series of small Nef interacting proteins (NIs) composed of an SH3 domain optimized for binding to Nef, fused to a sequence motif of the CD4 cytoplasmic tail and combined with a prenylation signal for membrane association. NIs bind to Nef in the low nM affinity range, associate with Nef in human cells and specifically interfere with key biological activities of Nef. Structure determination of the Nef-inhibitor complex reveals the molecular basis for binding specificity. These results establish Nef-NI interfaces as promising leads for the development of potent Nef inhibitors

    Transient Protein-Protein Interaction of the SH3-Peptide Complex via Closely Located Multiple Binding Sites

    Get PDF
    Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction model describes an interaction between two proteins under the assumption that a protein binds to its partner protein through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site (MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model. This improvement in prediction originates from a more realistic description of complex formation than the conventional interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex formation is important for the accurate description of protein complex formation, and especially for those of weak or transient protein complexes

    Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    Get PDF
    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk

    HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins

    Get PDF
    HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2). We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes

    Izloženost alergenima plijesni u unutarnjem okolišu

    Get PDF
    Humid indoor environments may be colonised by allergenic fi lamentous microfungi (moulds), Aspergillus spp., Penicillium spp., Cladosporium spp., and Alternaria spp. in particular. Mould-induced respiratory diseases are a worldwide problem. In the last two decades, mould allergens and glucans have been used as markers of indoor exposure to moulds. Recently, mould allergens Alt a 1 (Alternaria alternata) and Asp f 1 (Aspergillus fumigatus) have been analysed in various environments (residential and occupational) with enzyme-linked immunosorbent assays, which use monoclonal or polyclonal antibodies. Household Alt a 1 and Asp f 1 levels were usually under the limit of the method detection. By contrast, higher levels of mould allergens were found in environments with high levels of bioaerosols such as poultry farms and sawmills. Data on allergen Alt a 1 and Asp f 1 levels in agricultural settings may provide information on possible colonisation of respective moulds and point out to mould-related diseases in occupants.Vlažni, unutarnji prostori mogu biti kolonizirani alergogenim, filamentoznim mikrogljivicama (plijesni) uglavnom rodova Aspergillus, Penicillium, Cladosporium i Alternaria. Respiratorne bolesti uzrokovane plijesnima zdravstveni su problem diljem svijeta. U posljednja dva desetljeća, neki sastavni dijelovi plijesni kao alergeni i glukan rabe se kao pokazatelji izloženosti plijesni u unutarnjem okolišu. Nedavno su alergeni plijesni Alt a 1 (Alternaria alternata) i Asp f 1 (Aspergillus fumigatus) određivani u različitom okolišu (kućnom i profesionalnom) enzim-imunokemijskom metodom koja rabi monoklonska ili poliklonska antitijela. Razina Alt a 1 i Asp f 1 u kućnoj prašini ispod je granice detekcije. Nasuprot tomu, alergeni plijesni su određeni u okolišu s visokom razinom bioaerosola kao peradarnici i pilane. Razine alergena Alt a 1 i Asp f 1 u nekim poljoprivrednim objektima pružaju informaciju o mogućoj kolonizaciji plijesnima, što upućuje na moguće zdravstvene učinke kod zaposlenika

    A single-azimuth Pinna-Related Transfer Function database

    No full text
    Pinna-Related Transfer Functions (PRTFs) reflect the modifications undergone by an acoustic signal as it interacts with the listener's outer ear. These can be seen as the pinna contribution to the Head-Related Transfer Function (HRTF). This paper describes a database of PRTFs collected from measurements performed at the Department of Signal Processing and Acoustics, Aalto University. Median-plane PRTFs at 61 different elevation angles from 25 subjects are included. Such data collection falls into a broader project in which evidence of the correspondence between PRTF features and anthropometry is being investigated

    A single-azimuth pinna-related transfer function database

    Get PDF
    Pinna-Related Transfer Functions (PRTFs) reflect the modifications undergone by an acoustic signal as it interacts with the listener\u2019s outer ear. These can be seen as the pinna contribution to the Head-Related Transfer Function (HRTF). This paper describes a database of PRTFs collected from measurements performed at the Department of Signal Processing and Acoustics, Aalto University. Median-plane PRTFs at 61 different elevation angles from 25 subjects are included. Such data collection falls into a broader project in which evidence of the correspondence between PRTF features and anthropometry is being investigated
    corecore